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FOREWORD 

The test program reported herein was conducted under the sponsor- 
ship of the National Aeronautics and Space Administration (NASA), 
Goddard Space Flight Center (GSFC),  for the ThiokoL Chemical Corpora- 
tion (TCC),  Elkton Division,  under Program Area 921E,   Project 9033. 

The results of the test were obtained by ARO, Inc.  (a subsidiary of 
Sverdrup & Parcel and Associates, Inc.),  contract operator of the Arnold 
Engineering Development Center (AEDC),  Air Force Systems Command 
(AFSC), Arnold Air Force Station,  Tennessee,  under contract AF 40(600)- 
1200.    The test was conducted in Propulsion Engine Test Cell (T-3) of the 
Rocket Test Facility (RTF) from May 17 to 26,   1967,  under ARO Project 
Number RC1707,   and the manuscript was submitted for publication on 
August 10,   1967. 

Information in this report is embargoed under the Department of 
State International Traffic in Arms Regulations.    This report may be 
released to foreign governments by departments or agencies of the 
U.  S.  Government subject to approval of the National Aeronautics and 
Space Administration,  Goddard Space Flight Center,   Greenbelt, 
Maryland,  or higher authority.    Private individuals or firms require 
a Department of State export license. 

This technical report has been reviewed and is approved. 

Joseph R.   Henry Leonard T.  Glaser 
Lt Colonel,  USAF Colonel,  USAF 
AF Representative, RTF Director of Test 
Directorate of Test 
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ABSTRACT 

Two Thiokol Chemical Corporation Te-M-364-3 soiid-propellant 
rocket motors were qualification tested at average pressure altitudes 
of about 104,000 ft.   The motors were temperature conditioned at 75±3°F. 
One motor (S/N T00004) was fired in the no-spin mode,   and the other 
motor (S/N T00005) was fired while spinning about its axial centerline 
at 110 rpm to determine altitude ballistic performance,  tailoff char- 
acteristics, temperature-time history during and after motor operation, 
component structural integrity,  and nonaxial thrust of the spinning 
motor.    Vacuum specific impulse values based on the manufacturer's 
stated propellant weight were 290. 86 (S/N T00004) and 291. 14 
(S/N T00005) lbf-sec/lbm.    Both motors maintained structural integrity 
throughout their entire burn time.    However,  the fiber glass band 
located at the nozzle exit plane became completely detached 34 sec 
after ignition of motor S/N T00004 and partially detached 29 sec after 
ignition of motor S/N T00005.    Motor S/N T00004 experienced a maxi- 
mum case temperature of 697°F,   and motor S/N T00005 experienced a 
maximum case temperature of 829°F.    The average nonaxial thrust mag- 
nitude during the near-steady-state portion of S/N T00005 motor opera- 
tion was approximately 4. 0 lbf. 

This document is subject to special export controls 
and each transmittal to foreign governments or foreign 
nationals may be made only with prior approval of 
National Aeronautics and Space Administration, God- 
dard Space Flight Center, Greenbelt, Maryland. 

Ill 
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SECTION I 
INTRODUCTION 

The Thiokol Chemical Corporation <TCC) TE-M-364-3 solid- 
propellant rocket motor is to be used as the third stage of the Improved 
Delta Launch Vehicle,   DSV-3E-15,   Fig.   1 (Appendix I).    Delta missions 
scheduled to utilize the TE-M-364-3 motor include Radio Astronomy 
Explorer (RAE),   Interim Defense Communication Satellite Program 
(IDCSP),  International Telecommunications Satellite Program {Intelsat 
III),  and the Tiros Operational Satellite (Tiros-M)(Ref.   1).    For all of 
the above missions,  attitude control for the third stage and payload combi- 
nation will be achieved by spin stabilization. 

The primary objectives of the qualification test reported herein were 
to fire one motor in the „no-spin mode and one motor while spinning about 
its centerline at 110 rpm to determine altitude ballistic performance, 
tailoff characteristics, temperature-time history during and after motor 
operation, component structural integrity,  and nonaxial thrust of the 
spinning motor.    Both motors were temperature conditioned at 75±3°F 
prior to firing. 

Motor altitude ballistic performance,  tailoff characteristics, 
temperature-time history,  structural integrity,  and nonaxial thrust 
measurements are discussed. 

SECTION il 
APPARATUS 

2.1   TEST ARTICLE 

The TCC TE-M-364-3 solid-propeliant rocket motor {Fig.   2) is a 
full-scale flightweight motor having the following dimensions and nominal 
burning characteristics at 75°F: 

Length,  in. 53 
Diameter,  in. 37 
Loaded Weight,  lbm 1580 
Propellant Weight,  lbm 1440 
Throat Area,  in.2 8.50 
Nozzle Area Ratio,  A/A* 53:1 
Maximum Thrust, lbf 10, 970 
Maximum Chamber Pressure, psia                      650 
Burn Time,   sec 40 
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The cylindrical motor case is constructed o! 0. 040-in.  steel.    The 
aft hemisphere and approximately one-half of the forward hemisphere 
regions are insulated with V-44 asbestos-filled Buna-N rubber.    The 
remaining case area is uninsulated (Fig.  2a).    Two 37-in. -diam thrust 
attachment flanges are located near the motor equator. 

The contoured nozzle assembly contains a Graph-I-Tite G-90 Carbon 
throat insert and an expansion cone constructed of outer layers of glass 
cloth phenolic and inner layers of carbon cloth phenolic.    The partially 
submerged nozzle assembly has a nominal 53:1 area ratio and a 
15-deg half-angle at the exit plane.    Eight aluminum antenna studs and 
a fiber glass stiffener (support) ring were bonded to the nozzle expan- 
sion cone adjacent to the exit plane. 

The TE-M-364-3 rocket motor contains a propellant grain formula- 
tion designated TP-H-3062 (ICC Class B) which is cast in an eight-point - 
star configuration (Fig.   2b).    The isentropic exponent of the propellant 
exhaust gases is 1. 18 (assuming frozen equilibrium). 

Ignition was accomplished by a TE-P-358-3 Pyrogen    igniter (Fig. 3) 
which contained 19 gm of size 2A Boron pellets used to initiate the eight- 
point-star igniter grain.    The aft section of the igniter culminated in a 
nozzle body containing six small nozzles for distribution of the igniter 
propellant flame onto the motor propellant grain (Fig.   2a).    The head 
end of the igniter contained a safe-and-arm device,  two squib ports,  one 
Pyrogen pressure port,  and one chamber pressure port.    For the tests 
reported herein,   one McCormic Selph nominal 15-sec delay squib was 
used.    Nominal ignition current was 5 amp and was maintained for 
approximately 0. 3 sec. 

2.2  INSTALLATION 

The motors were cantilever-mounted from the spindle face of a spin 
fixture assembly in Propulsion Engine Test Cell (T-3) (Ref.   2).    The 
spin assembly was mounted on a thrust cradle,  which was supported 
from the cradle support stand by three vertical and two horizontal double- 
flexure columns (Fig.   4).    The spin fixture assembly consists of a 10-hp 
squirrel-cage-type drive motor,   a forward thrust bearing assembly,   a 
46-in. -long spindle having a 36-in. -diam aft spindle face,   and an aft 
bearing assembly.    Each motor was mounted in a firing can which was 
adapted to the spindle face.    For the spin firing,  the spin fixture was 
rotated counterclockwise,  looking upstream.    For the no-spin firing the 
spin fixture was locked in place to prevent rotation.    Electrical leads to 
and from the igniters,  pressure transducers,   and thermocouples on both 
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motors were provided through a 170-channel,   slip-ring assembly 
mounted between the forward and aft bearing assemblies on the spindle. 
Axial thrust was transmitted through the spindle-thrust bearing assembly 
to two load cells mounted just forward of the thrust bearing. 

Pre-ignition pressure altitude conditions were maintained in the 
test celL by a steam ejector operating in series with the RTF exhaust 
gas compressors.    During a motor firing,  the motor exhaust gases were 
used as the driving gas for the 42-in. -diam,  ejector-diffuser system to 
maintain test cell pressure at an acceptable level. 

2.3  INSTRUMENTATION 

Instrumentation was provided to measure axial thrust,  pyrogen pres- 
sure, motor chamber pressure, test cell pressure, lateral force, motor 
case and nozzle temperatures,   and rotational speed.    Table I (Appendix II) 
presents instrument ranges,   recording methods,  and an estimate of meas- 
urement uncertainty for all reported parameters. 

The axial thrust measuring system consisted of two double-bridge, 
strain-gage-type load cells mounted in the axial double-flexure column 
forward of the thrust bearing on the spacecraft centerline.    The nonaxial 
force measuring system consisted of double-bridge,  strain-gage-type 
load cells installed forward and aft between the flexure-mounted cradle 
and the cradle support stand normal to the rocket motor axial centerline 
and in the horizontal plane passing through the motor axial centerline 
(Fig.  4c). 

Unbonded strain-gage-type transducers were used to measure test 
cell pressure.    Bonded strain-gage-type transducers with ranges of 
from 0 to 5,  0 to 50,  0 to 750, and 0 to 1500 psia were used to measure 
motor chamber pressure and pyrogen pressure.    Chromel®-Alumel® (CA) 
thermocouples were bonded to the motor case and nozzle (Fig.  5) to 
measure outer surface temperatures during and after motor burn time. 
Rotational speed of the motor assembly was determined from the output 
of a magnetic pickup. 

The output signal of each measuring device was recorded on inde- 
pendent instrumentation channels.    Primary data were obtained from 
four axial thrust channels, three test cell pressure channels,  two pyrogen 
pressure channels,  and five motor chamber pressure channels.    These 
primary data were recorded as follows:   Each instrument output signal 
was indicated in totalized digital form on a visual readout of a millivolt- 
to-frequency converter.    A magnetic tape system,  recording in frequency 
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form,  stored the signal from the converter for reduction at a later time 
by an electronic digital computer.    The computer provided a tabulation 
of average absolute values for each 0. 10-sec time increment and total 
integrals over the cumulative time increments. 

The output signal from the magnetic rotational speed pickup was 
recorded in the following manner:   A frequency-to-analog converter was 
triggered by the pulse output from the magnetic pickup and in turn sup- 
plied a square wave of constant amplitude to the electronic counter and 
oscillograph recorder.    The scan sequence of the electronic counter was 
adjusted so that it displayed directly the motor spin rate in revolutions 
per minute. 

The millivolt outputs of the thermocouples were recorded on mag- 
netic tape from a multi-input,  analog-to-digital converter at a sampling 
rate for each thermocouple of 150 samples per second.    The millivolt 
outputs of the lateral force load cells were recorded on FM analog mag- 
netic tape and played back through a filter system to an oscillograph and 
a digital magnetic tape recorder at a later time. 

A recording oscillograph was used to provide an independent backup 
of all operating instrumentation channels except the temperature and side 
force systems.   Selected channels of thrust and pressures were recorded 
on null-balance,  potentiometer-type strip charts for analysis immediately 
after a motor firing.    Visual observation of each firing was provided by a 
closed-circuit television monitor.    High-speed,  motion-picture cameras 
provided a permanent visual record of each firing. 

2.4  CALIBRATION 

The thrust calibrator weights,  axial and lateral force load cells, 
and pressure transducers were laboratory calibrated prior to usage in 
this program.   After installation of the measuring devices in the test cell, 
all systems were calibrated at ambient conditions and again at simulated 
altitude conditions just before a motor firing. 

The pressure systems were calibrated by an electrical,  four-step 
calibi ution,  using resistances in the transducer circuits to simulate 
selected pressure levels.    The axial thrust instrumentation systems 
were calibrated by applying to the thrust cradle known forces which were 
produced by deadweights acting through- a bell crank.    The calibrator is 
hydraulically actuated and remotely operated from the control room. 
The side-force instrumentation systems were calibrated by an electrical, 
four-step calibration,  using resistances in the circuits to simulate 



AEDC-TR-67-179 

selected force Levels.    Thermocouple systems were calibrated by using 
known millivolt levels to simulate selected thermocouple outputs. 

After each motor firing, with the test cell still at simulated altitude 
pressure, the systems were again recalibrated to determine if any shift 
had occurred. 

SECTION III 
PROCEDURE 

The two TCC TE-M-364-3 rocket motors (S/N T00004 and T00005) 
arrived at AEDC on May I,   196 7.    The motors were visually inspected 
for possible shipping damage and radiographically inspected for grain 
cracks,  voids,  or separations and found to meet criteria provided by 
the manufacturer.    During storage in an area temperature conditioned 
at 75 ± 5°F, the motors were checked to ensure correct fit of mating 
hardware,  and the electrical resistances of the igniters were measured. 
The nozzle throat and exit diameters were obtained,   and the motors 
were weighed.    Thermocouples were bonded to the nozzle and motor 
case,  the pressure manifold and transducers were mounted,   and the 
entire motor assembly was photographed and installed in the firing can. 

Dimensions of selected surfaces as a function of angular position 
relative to the centerline of both motors were determined by TCC per- 
sonnel to facilitate alignment of the motors in the test cell. 

After installation of the no-spin motor (S/N T000Q4) in the test cell, 
the motor centerline was axially aligned with the spin axis by rotating 
the motor and measuring the deflection of the selected motor surfaces 
with a dial indicator.    The spin fixture was locked in place to prevent 
rotation.    Temperature conditioning of the motor was begun and con- 
tinued for a period in excess of 46 hr prior to closing the test cell, 
during which time a continuity check of all electrical systems was per- 
formed.    Pre-fire ambient calibrations were completed; the test cell 
pressure was reduced to simulate the desired altitude,  and altitude 
calibrations were taken. 

The final operation prior to firing a motor was to adjust the firing 
circuit resistance to provide the desired current (5 amp) to the igniter 
squib.    The entire instrumentation measuring-recording complex was 
activated,   and the motor was fired.    Simulated altitude conditions were 
maintained for approximately 45 min after the firing,  during which time 
motor temperatures were recorded and post-fire calibrations were 
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completed.    Low-range chamber pressure data were also recorded for 
10 min after burnout of the motor.    The test cell pressure was then 
returned to ambient conditions,  and the motor was inspected, photo- 
graphed,  and removed to the storage area.    Post-fire inspections at the 
storage area consisted of measuring the throat and exit diameters of the 
nozzle,  weighing the motor,   and photographically recording the post- 
fire condition of the motor. 

The procedure followed for the spin motor (S/N T00005) was iden- 
tical to that for the no-spin motor, with the following exceptions: 

a. The assembly was balanced at a rotational speed of 110 rpm 
and in-place stand static and dynamic calibrations (see 
Appendix III) were accomplished. 

b. Pre-fire altitude calibrations were taken after spinning of the 
motor assembly had stabilized at 110 rpm. 

c. The motor was fired while spinning {under power) at 110 rpm. 

d. Spinning of the motor was continued for approximately 40 min 
after burnout,   at the conclusion of which another set of cali- 
brations was taken. 

SECTION IV 
RESULTS AND DISCUSSION 

Two Thiokol Chemical Corporation (TCC) TE-M-364-3 solid- 
propellant rocket motors (S/N T00004 and T00005) were fired in Propul- 
sion Engine Test Cell (T-3).    The motors were pre-fire conditioned at 
75 ± 3°F for periods in excess of 46 hr and fired at average pressure 
altitudes of about 104, 000 ft.    Motor S/N T00004 was fired in the no-spin 
mode.    Motor S/N T00005 was fired while spinning about the motor 
centerline at 110 rpm.    The primary objectives of the test program were 
to fire one motor in the no-spin mode and one motor while spinning about 
its centerline at 110 rpm to determine altitude ballistic performance, 
tailoff characteristics,  temperature-time history during and after motor 
operation,   component structural integrity,  and nonaxial thrust of the 
spinning motor. 

The resulting data are presented in both tabular and graphical form. 
Motor physical dimensions are shown in Table II,  and motor perform- 
ance data,  based on action time (ta) and during the time that nozzle throat 
flow was sonic (tis)>  are summarized in Table III.    Specific impulse 
values are presented using both the manufacturer's stated propellant 
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weight and the motor expended mass deter mined from AEDC pre- and 
post-fire motor weights.    When multiple channels of equal accuracy 
instrumentation data were used to obtain values of a single parameter, 
the average value was used to calculate the data presented. 

4.1   ALTITUDE IGNITION CHARACTERISTICS 

The motors were ignited at pressure altitudes of 129, 000 ft 
(S/N T00004) and 125, 000 ft <S/N T00005).    An analog trace of the igni- 
tion event is shown in Fig.   6.    Ignition lag times (tg) were 15. 42 sec 
(S/N T00004) and 15. 73 sec <S/N T00005); the igniter utilized a nominal 
15-sec-delay squib.    Peak pyrogen pressures during the ignition event 
were 1123 psia (S/N T00004) and 1120 psia (S/N T00005). 

4.2  ALTITUDE BALLISTIC PERFORMANCE 

The variations of thrust,   chamber pressure,  and test cell pressure 
for each motor firing are shown in Fig.  7.    The variations of chamber 
pressure,  measured with a 0- to 5-psia transducer,   and test cell pres- 
sure during an extended portion of tailoff for each motor fired are pre- 
sented in Fig.   8. 

Since the nozzle does not operate fully expanded at the low chamber 
pressures encountered during tailoff burning,  the measured total im- 
pulse data during this period cannot be corrected to vacuum conditions 
by adding the product of cell pressure integral and nozzle exit area. 
Therefore,  total burn time (tt) was segmented {Fig.   9),  and the method 
used to determine vacuum impulse is described as follows:   The time 
of exhaust nozzle flow breakdown (tbd) was considered to have occurred 
simultaneously with the time of exhaust diffuser flow breakdown (as indi- 
cated by the sudden increase in cell pressure).    After this time,  flow at 
the nozzle throat was considered to be at sonic velocity until the time (ts) 
at which the ratio of motor chamber pressure to cell pressure had de- 
creased to a value of 1. 3, 

Vacuum-corrected total impulse data were then calculated from 

lbd lbd ls 

Ivac   =   f        Fdt   -   Aex.v(t     /       Pcelldt   -    Cf Atpogt_Mrc     /       P<^dt 

c
bd 
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where: 

At r- /       Pchdl 
'post-fire     J cn 

=   1.859 for both motors (S/N T00004 and T00005). 

The time interval,  from ti to t2,  is a 1-sec interval of motor oper- 
ation just prior to decrease in chamber pressure (from 39. 6 to 40. 6 sec 
for S/N T00004 and from 39. 3 to 40. 3 sec for S/N T00005).    The impulse 
accumulated between the time that the nozzle flow becomes subsonic (ts) 
and the end of burn time (t^) is considered negligible.    Performance char- 
acteristics for both motors are tabulated below: 

Motor S/N 

Motor Spin Rate,   rpm 

Action Time (ta),  sec 

Total Burn Time (tt),  sec 

Time after Ignition that Nozzle Flow becomes 
Subsonic (ts),   sec 

Vacuum Total Impulse during the Time that 
Nozzle Throat Flow was Sonic,  (tig), lbf-sec 

Vacuum Specific Impulse Based on tis and 
the Manufacturer's Stated Propellant Weight, 
lbf-sec/lbm 

Vacuum Specific Impulse Based on t^g and 
Expended Mass,   lbf-sec/lbm 

Average Vacuum Thrust Coefficient Based 
on ta and the Average Pre- and Post-Fire 
Throat Area 

T00004 T00005 

0 110 

45. 2 44.6 

140 130 

111. 3 90. y 

418,601 419,724 

290. 86 291.14 

288.20 288.77 

(see 
Table III) 1. 859 

The low level pressure operation after propellant burnout (approxi- 
mately 50 sec after motor ignition) of each motor is believed to have re- 
sulted from low pressure level propellant sliver burning and/or smoldering 
insulator material.    There were no indications of increases in chamber 
pressure during the long tailoff period.    Therefore,   it is concluded that 
the motors did not experience any sporadic burning of propellant slivers 
after motor burnout.    Post-fire inspection of Motor S/NT00004 revealed 
eight small propellant slivers that were later determined to weigh approxi- 
mately 0.7 lbm.    No propellant slivers were evident during the post-fire 
inspection of motor S/N T00005. 
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A comparison of thrust variations between the spin (S/N T00004) 
ana no-spin (S/N T00005) firings is presented as a function of time in 
Fig.   10.    The spin motor (S/N T00005) exhibited a higher thrust 
(approximately 150 lbf) and shorter burn time (approximately 1 sec) 
than the no-spin motor (S/N T00004).    This difference in motor per- 
formance is generally found when comparable spin and no-spin motors 
are compared. 

4.3   STRUCTURAL INTEGRITY 

Motor case and nozzle temperatures are presented in Figs.   11 
through 15.    Maximum case temperature measured on motor S/N T00004 
was 697°F,   occurring approximately 99 sec after motor ignition on 
thermocouple T4,  located at the junction of the insulated and uninsulated 
portion of the forward hemisphere over a propellant grain star.    The 
maximum case temperature for motor S/N T00005 was 829°F,  occurring 
approximately 76 sec after motor ignition at thermocouple T5,  located 
on the uninsulated portion of the forward hemisphere over a propellant 
grain valley. 

Post-fire photographs of motor S/N T00004 and T00005 are pre- 
sented in Fig.   16.    Post-fire examination of motor S/N T00004 did not 
reveal any distortion or evidence of thermal damage to the motor case. 
Post-fire examination of motor S/N T00005 revealed that several hot 
spots were located on the forward hemisphere just forward of the motor 
equator on the uninsulated section of the motor case.    One small depres- 
sion was also noted on the motor case in the uninsulated area. 

Both nozzle exit cones experienced thermal damage as was evidenced 
by cracking of the inner layers of carbon cloth phenolic (Fig.   17) and 
flaking of the outer layers of glass cloth phenolic (Fig.   18).    Nozzle 
throat measurements indicated that erosion had caused an area increase 
of 11.4 and 8. 96 percent from the pre-fire areas of motor S/N T00004 
and T00005,   respectively. 

Post-fire examination of motor S/N T00004 revealed that the fiber 
glass support ring, located at the exit plane of the nozzle expansion 
cone,  had become detached (Fig.   19) from the expansion cone during 
the motor firing.    A review of motion-picture and oscillograph data ob- 
tained during the firing indicates that the ring became detached approxi- 
mately 34 sec after motor ignition. 

Prior to firing motor S/N T00005,  TCC personnel installed eight 
small metal clamps that extended over the aft surface of the fiber glass 
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band and were bolted to the eight antenna studs located on the exterior 
of the expansion cone.    Post-fire inspection of motor S/N T00005 re- 
vealed that the fiber glass band had become detached from the nozzle 
expansion cone over the major portion of the exit plane.    However,  six 
of the eight clamps and antenna studs remained in place and perhaps 
prevented the band from becoming completely detached from the expan- 
sion cone.    Review of the motion-pictures taken during the firing indi- 
cates that the band became partially detached from the expansion cone 
approximately 29 sec after motor ignition. 

4.4  NONAXIAL THRUST VECTOR MEASUREMENTS 

One of the primary objectives of this test was to measure motor 
thrust misalignment during the spin firing of motor S/N T00005.    This 
objective was accomplished by measuring the nonaxial component of the 
axial thrust.    The recorded nonaxial thrust data were treated to eliminate 
or correct for installation {misalignment of motor centerline from spin 
axis) and vibration (nonaxial noise frequencies superimposed upon the 
data frequency) effects as described in Appendix III.    Nonaxial thrust 
data from ignition to the point of nozzle flow breakdown is presented in 
Fig.   20. 

The nonaxial thrust values recorded during the spin firing (motor 
S/N T00005) exhibited peaks during the thrust buildup and tailoff portions 
of motor operation (before 1.0 sec and after 40 sec of motor operation). 
These values are questionable because of undefined dynamic character- 
istics of the system during the ignition and tailoff transients.    Because 
of the uncertainties inherent in the nonaxial thrust data recorded during 
these transients, they will not be considered in the following discussion. 

The maximum nonaxial thrust magnitude during the near-steady- 
state portion of motor operation (from 1. 0 to 40 sec after ignition) was 
11.2 lbf and occurred 39. 6 sec after ignition.    The corresponding 
angular position (measured clockwise, looking upstream,  from the 
motor top dead center reference notch) was  51 deg.    The nonaxial thrust 
impulse accumulated during near-steady-state motor operation (from 1.0 
to 40 sec) was approximately 155 lbf-sec.    The average nonaxial thrust 
magnitude during this period was approximately 4, 0 lbf.    It should be 
noted that at 29 sec after ignition, the nozzle support ring began to de- 
tach from the exit cone (indicated by review of motion-picture film). 
The increase in nonaxial thrust magnitude coupled with the erratic 
change in vector angular location is attributed to the effects on the gas 
flow of the partially detached nozzle exit cone. 

10 
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The nonaxial thrust data presented in Fig.   20 were corrected for 
nonaxial force caused by misalignment of the motor on the spin fixture. 
The angular misalignment of the motor centerline with respect to the 
spin axis was 0.0061 deg.    This value of angular misalignment resulted 
in a nonaxial thrust correction of 1.08 lbf at the maximum thrust level. 

The inaccuracy of the nonaxial force measuring system (excluding 
the ignition and tailoff transients) for this test is estimated to be 
±0. 80 lbf (Appendix III). 

SECTION V 

SUMMARY OF RESULTS 

Two Thiokol Chemical Corporation TE-M-364-3 solid-propellant 
rocket motors were temperature conditioned at 75 ± 3°F for periods in 
excess of 46 hr and fired at average pressure altitudes of about 
104, 000 ft.    Motor S/N T00004 was fired in the no-spin mode,  whereas 
motor S/N T00005 was fired while spinning about the motor centerline 
at 110 rpm.    Results are summarized as follows: 

1. Vacuum total impulse values during the time that nozzle throat 
flow was sonic were 418, 601 and 419, 724 Ibf-sec for motors 
S/N T00004 and T00005,  respectively.    Corresponding vacuum 
specific impulse values,  based on the manufacturer's stated 
propellant weight,  were 290. 86 and 291. 14 lbf-sec/lbm< 

2. The maximum nonaxial thrust magnitude during the steady- 
state operation of motor S/N T00005 was  11.2 lbf and 
occurred 39.6 sec after ignition.    The nonaxial thrust impulse 
accumulated during the steady-state portion of motor operation 
was approximately 155 lbf-sec. 

3. The time interval from the time at which firing voltage was 
applied to the igniter circuit to the time of increase in chamber 
pressure was 15.42 sec for motor S/N T00004 and 15. 73 sec 
for motor S/N T00005.    (The igniter utilized a nominal 15-sec- 
delay squib). 

4. The time interval between 10 percent of maximum chamber 
pressure during ignition and 10 percent of maximum chamber 
pressure during tailoff (ta) was 45. 2 sec for motor S/N T00004 
and 44. 6 sec for motor S/N T00005. 

11 
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Post-fire examination of motor S/N T00005 did not reveal any 
distortion or thermal damage to the motor case.    Post-fire 
examination of motor S/N T00005 revealed one small depres- 
sion and several hot spots on the forward hemisphere of the 
motor case on the uninsulated area.    Both nozzle exit cones 
experienced cracking of the inner layers of carbon cloth 
phenolic and flaking of the outer layers of glass cloth phenolic. 

The fiber glass nozzle exit support ring became completely 
detached from the expansion cone 34 sec after motor ignition 
during the firing of motor S/N T00004 and partially detached 
29 sec after motor ignition during the firing of motor 
S/N T00005. 

Each motor experienced low level pressure operation after 
propellant burnout for approximately 90 sec (S/N T00004) and 
80 sec (S/N T00005).    These low level pressures are believed 
to have resulted from smoldering insulation. 

The maximum motor case temperatures were 69 7° F for motor 
S/N T00004 and 829°F for motor S/N T00005.    The times from 
ignition that these temperatures occurred were 99 sec for 
motor S/N T00004 and 76 sec for motor S/N T00005. 
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e.   Motor Photogroph 

Fig. 2    Concluded 
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b.   Photograph (Looking Downstream) 

Fig. 4   Continued 
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a.  Motor S/N T00004 

Fig. 16   Photographs Showing the Post-Fire Condition of the TE-M-364-3 Rocket Motor 
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b.  Motor S/N T00005 

Fig. 16   Concluded 
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TABLE! 
INSTRUMENTATION DESCRIPTION 

m 
o n 

Parameter 

Estimator! Measurement Uncertainty 
Uncertainty [2 Sigma} 

Recording Device 

Steady State at 
Operate Level, 

Percent of 
Reading* 

Integral, 
Percent 

of 
Ki.MI.llHg 

Over the Range 
or the 

Measuring 
Device 

Method of 
System 

Calibration 
Type Range Type 

Axial Force.   Lb£ ±0 33 --- ... Hemd- J Strain-Gage 
Force Transducers 

0 to 
10, 000 lbf 

(2 Used) 

Volume -to- Frequency 
Converter onto Deadweight 

Total Impulsn, 
lbf-sec --- ±0.35 ... 

Magnetic ' [\ipe 

Pyrogen 
Pressure, ps)j 

±1. 15 ... ... Bonded Strain-Gage 
Pressure 

0 to 1500 psia 
(2 Uüed) 

Resistance Shunt 

Motor Chamber 
Pressure,  paia 

±0.-12 ... ... 0 to 750 psia 
(2 Used) 

Chamber 
Pressure 
Integral, psia-sec 

... ±0. -11 ... 

Low-Range 
Chamber 
Pressure,   paia 

... 
-■- ±3.0 

0.5 to 5 psia 
{2 Used) 

... ... ±2. 0 
5 to 50 psia 
(1 Used) 

Test Cell 
Pressure,  psia 

±2.08 ... --- Unbonded Sti-ain- 
(Jagc Pressure 
Transducers 

0 to 1 psia 
(3 Used) 

Teat Cell 
Pressure 
Integral, psu-scr 

--- ±2.05 ... 

Time Interval, 
msec 

... ... ±5 msec 
Synchronous 
Timing Line 
Generator 

... 
Photographically Recording 
Galvanometer 
Oscillograph 

Compared with 
Frequency Standard 

Temperature, °k 

... -- ±1Q*F 
C?hronnel-Alumel Tem- 
perature Transducers 

0 to 1700'F 
SeCiucnti.il Sampling 
Millivolt -to-Digital 
Converter and Magnetit. 
Tape Storage Data 
Acquisition System 

Millivolt Source and 
NBS Temperature Tables ... ... ±5*F 

lion-Conitantan Tem- 
perature Transducers 

0 to 200° F 

Weight,  Lbm ±0.03 lbm --- ... T3eam Balance 
Scales 0 to 3000 lbm Visual Readout 

Periodic Deadweight 
Calibration 

*Does not Apply to Weight 
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TABLE II 

SUMMARY OF TE-M-364-3 MOTOR PHYSICAL DIMENSIOKS 

Test Number    RC1707 

Motor Serial Number 

Test Date 

Average Motor Spin Rate during Firing, rpm 

AEDC Pre-Fire Motor Weight,  lbm 

AEDC Post-Fire Motor Weight,  lbm 

AEDC Expended Mass, lbm 

Manufacturer's Stated Propellant Weight,  lbm 

Nozzle Throat Area,  in.^ 
Pre-Fire 
Post-Fire 
Percent Change from 

Pre-Fire Measurement 

Nozzle Exit Area,   in.2 
Pre-Fire 
Post-Fire 
Percent Change from 

Pre-Fire Measurement 

Nozzle Area Ratio 
Pre-Fire 
Post-Fire 
Average 

1 2 

T00004 T00005 

5/17/67 5/26/67 

0 109. 3 

1573. 867 1577.562 

121.383 124.066 

1452.484 1453.496 

1439.20 1441.64 

8.4961 8.4883 
9.4614 9.2491 

11.4 

457.323 
465.836 

1.86 

8.96 

457. 361 
457. 652 

0. 06 

53.83 53.88 
49.24 49.48 
51.56 51.68 
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TABLE III 

SUMMARY OF TE-M-364-3 MOTOR PERFORMANCE 

Test Number      RC1707 

Motor Serial Number 

Test Date 

Average Motor Spin Rate during Firing,  rpm 

Cell Temperature at Ignition,  °F 

Ignition Lag Time (tjg),' *' sec 

Action Time (ta),(1* sec 

Total Burn Time (tt),*1* sec 

Time Interval that Nozzle Throat Flow was 
Sonic (tls),(D sec 

Simulated Altitude at Ignition,  ft 

Average Simulated Altitude during ta,   ft 

Measured Total Impulse (based on ta).  Lbf-sec 
Average of Four Channels of Data 
Maximum Deviation from Average,  percent 

Chamber Pressure Integral (based on ta),  psia-sec 
Average of Two Channels of Data 
Maximum Deviation from Average,  percent 

CeLl Pressure Integral (based on ta),  psia-sec 
Average of Three Channels of Data 
Maximum Deviation from Averagej   percent 

Vacuum Total Impulse (based on ta),  Lbf-sec 

Vacuum Total Impulse (based on tis), '2' lbf-sec 

Vacuum Specific Impulse (based on ta).  lbf-sec/lbm 
Based on Manufacturer's Stated Propellant Weight 
Based on Expended Mass (AEDC) 

Vacuum Specific Impulse (based on tis),  lbf-sec/lbm 

Based on Manufacturer's Stated Propellant Weight 
Based on Expended Mass (AEDC) 

Average Vacuum Thrust Coefficient, Cp 
Based on ta and Average Pre- and Post-Fire Throat Areas 

Maximum Motor Case Temperature., eF 

Time from Ignition that Maximum Motor Case 
Temperature Occurred,  sec 

1 2 

T00004 T00005 

5/17/67 5/26/67 

0 109.3 

80 90 

15.42 15. 73 

45. 2 44.6 

140 130 

111. 3 90.9 

129, 000 125,000 

106,000 104,000 

414,452 414,966 
0.0089 0.0041 

* 25, 340 
* 0.0032 

5.4736 5.9939 
1.02 0. 372 

416,981 417,708 

418, 601 419, 724 

289.73 289.74 
287. 08 287. 38 

290.86 291.14 
288.20 283.77 

* 1.859 

697 829 

99 76 

'1'See nomenclature for definitions. 

^   ^See Section 4. 2 for method of calculation, 

* Valid chamber pressure data were not obtained from 1. 2 to 36. 2 sec during the 
motor firing because of blockage of the chamber pressure line. 
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APPENDIX III 
CALIBRATION OF NONAXIAL THRUST VECTOR MEASURING SYSTEM 

TO DETERMINE SYSTEM ACCURACY 

In order to determine the accuracy of nonaxial thrust vector meas- 
urement using the spin technique,  a spin calibration of the test configu- 
ration was accomplished.    A description of the calibration technique 
used for the test reported herein is presented in the following sections. 

INSTALLATION 

The spin fixture was mounted on the thrust cradle with the spin 
axis aligned with the axial thrust column centerline.    Forward and aft 
nonaxial force load cells {0 to 500-lbf) were mounted in the plane of 
the spin fixture horizontal centerline as shown in Fig.  4c.    A stiffness 
check was made on the spin fixture-thrust cradle configuration which 
consisted of moving the assembly laterally off the mechanical null 
position a known amount and measuring the force exerted by the assembly 
on the load cells. 

The motor and mounting can assembly was installed on the spin 
fixture,  and the motor centerline was concentrically aligned with the 
fixture spin axis. 

The entire system (thrust cradle,  spin fixture,   and motor) was 
aligned so that horizontal (nonaxial) force as indicated by either the 
forward or aft nonaxial force load cell was minimum (mechanical null 
position). 

CALIBRATION PROCEDURE 

A stand static calibration to determine system response to static, 
lateral loads was accomplished.    This consisted of applying known 
lateral forces to the mounting can with and without an axial load of 
11, 000 lbf applied to the system.    The lateral loads were applied normal 
to the motor thrust axis near the plane of the nozzle throat.    A compari- 
son of measured and applied static force is presented in Fig. Ill-1.   The 
measured force was,  in all cases,  greater than the applied force be- 
cause,  as the system is forced away from its mechanical null position, 
a weight component of the system,  greater than the flexure restoring 
force, was imposed in addition to,  and in the same direction as, the 
applied force.    The deviation of measured from applied static force was 
smaller during the post-fire calibration because the total system mass 
was less,  decreasing the measured weight component of the system. 
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After the stand static calibration,  the motor was rotated at 110 rpm 
about its axial centerline and balanced to a degree where total nonaxial force 
produced by system, unbalance was 0. 35 lbf.    A dynamic (spin) calibra- 
tion was then performed.    This calibration consisted of placing known 
weights at several angular locations on the mounting can surface to pro- 
duce a known force as a function of spin rate: 

where: 

F   -   mrcü2 

F = applied nonaxial force,   lbf, 

m = applied mass,  lbm 

r = radial distance to center of gravity of applied mass,   ft 

oj = rotational speed, radians/sec 

Two weights (nominally 1 and 2 lbm) were attached to the can at 
0 deg (pre-fire) and at three different angular locations (0,   60,  and 
120 deg),  post-fire.    Both the pre- and post-fire dynamic calibrations 
were conducted with and without axial loads applied. 

DATA ACQUISITION AND REDUCTION 

Applied Nonaxial Fore« 

The applied nonaxial force was determined from the relationship: 

r(app) 
F = -*- mr        0J 

where mr(app) is the applied unbalance (product of applied mass and its 

radial distance),   and u is the rotational speed.    The ratio — is the mag- 
xo 

nification factor of forced vibration and is a function of the ratio of spin 
frequency (u) to stand natural frequency (wn) as: 

X 

'E-&H<*-) 
(The damping factor,  £ ,  was assumed to be zero).    The ratio — 

*o 
changed from pre- to post-fire because of the change in system natural 
frequency as a result of the change in mass. 
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Measured Nonaxial Force 

Nonaxial force data were recorded on magnetic tape during the cali- 
bration sequence.    These data were then electronically filtered to 
remove all frequencies above the rotational frequency. 

The nonaxial force magnitude and angular location were corrected 
for filter effects as outlined in Ref.   3. 

The measured nonaxial force (based on stand static calibration re- 
sults) consisted of the force due to the applied weight and the residual 
unbalance force in the system.    The true measured nonaxial force 
resulted when the residual unbalance force was vectorially subtracted 
from the measured nonaxial force. 

RESULTS 

Figure III-1 is a comparison of measured and applied static force 
for the calibration reported herein.    The application of 11, 000-lbf axial 
load to the system had no effect on the slope of either the pre- or post- 
fire calibration curves.    The ratio of measured to applied static force 
was 1. 030 pre-fire and 1. 008 post-fire. 

A nominal unbalance of 11.5 in. -lbm was applied at an angular loca- 
tion of 0 deg during the pre-fire spin calibration.    The system was then 
rotated at 110 and 150 rpm.    The post-fire calibration consisted of 
applying nominal unbalances of 11. 5,   30,   and 50 in. -lbm at angular 
locations of 0,  60,   and 120 deg.    The system was then rotated at 
110 rpm. 

A comparison of true measured and applied nonaxial force is pre- 
sented in Fig. HI-2.    The true measured nonaxial force is an average 
of 10 values.    Typical envelopes of the data points used in the averages 
are presented and incorporated into the accuracy determination.    The 
maximum deviation of true measured from applied nonaxial force of 
0. 60 lbf was observed at an applied nonaxial force of 8. 50 lbf.      The 
system accuracy based on an estimated two standard deviation for the 
test reported herein was ±0. 80 lbf at the steady-state thrust level. 
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